
Introduction to verified computation

September 2015

Waseda University

Graduate School of Fundamental Science and Engineering

Major in Pure and Applied Mathematics

Research on Numerical Analysis

Kouta Sekine



c⃝ Copyright by Kouta Sekine, 2015

All Rights Reserved.

ii



Contents

Chapter 1. Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Usage of gfortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2. What’s verified computation? . . . . . . . . . . . . . . . 5

2.1. Numerical Computations and Its Error . . . . . . . . . . . . . . . . . 6

2.2. Verified Computations and Interval Arithmetic on Real Numbers . . 8

Chapter 3. Floating-Point Number and Its Interval Arithmetic 11

3.1. IEEE 754 : Standard for Floating-Point Arithmetic . . . . . . . . . . 12

3.2. Interval Arithmetic on Floating-Point Numbers . . . . . . . . . . . . 14

3.3. How to Change Rounding Rules . . . . . . . . . . . . . . . . . . . . 14

Chapter 4. Verification Theory for System of Linear Equations 19

Chapter 5. How to Install Some Packages . . . . . . . . . . . . . . . 25

5.1. Install BLAS and Lapack . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2. Install Slib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 6. Programming of Verified Theory . . . . . . . . . . . . . 31

6.1. Interval Arithmetic for Matrix on floating-point number . . . . . . . 32

6.2. Programming of Verified Theory for System of Linear Equations . . . 34

iii



Chapter 1

Preliminary
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1.1. Usage of gfortran

In this lecture, we will use the gfortran which is the fortran compiler. If you have

never used the Fortran language, you try it now!

Exercise 1.1. Write the Algorithm 1 and run it. Let’s filename be “hello.f90”.

Algorithm 1 hello.f90

program hello
write(*,*) ’Hello world!’
stop
end program hello

You can compile the following command for “hello.f90” by using gfortran on the

Gnome terminal:

$ gfortran hello.f90

Finally, you execute the program using the following command:

$ ./a.out

If display “Hello world!”, then succeed.

1.2. Mathematical Notations

In this section, we prepare some mathematical notations.

• Let R be the set of real numbers.

• The closed interval denoted by [a, b] which is the set of real numbers given

by [a, b] = {x ∈ R|a ≤ x ≤ b}.

• Let I denote the n× n identity matrix.

• Let O denote the n × n matrix of all zeros and 0 denote the n-vector of all

zeros.

• Let e the n-vector of all ones i.e. e := (1, . . . , 1)T ∈ Rn.
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• Inequalities for matrices are understood componentwise, e.g. for real n × n

matrices A = (aij) and B = (bij) the notation A ≤ B means aij ≤ bij for all

(i, j).

• The notation |A| means |A| = (|aij|) ∈ Rn×n, the nonnegative matrix con-

sisting of componentwise absolute values of A.

• Similar notation is applied to real vectors.

• Let ∥ · ∥ denote the norm of vector and matrix.

• For a n dimensional vector x = (x1, · · · , xn)
T , the maximum norm is defined

by ∥x∥∞ := max1≤i≤n |xi|.

• For a m × n matrix A = (aij) , the maximum norm is defined by ∥A∥∞ :=

max1≤i≤m

∑n
j=1 |aij|.

• Let IR be set of real intervals.

• Let F be set of floating-point numbers defined by IEEE 754 standard.

• Let IF be set of intervals for floating-point numbers.
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What’s verified computation?
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2.1. Numerical Computations and Its Error

Numerical computation solved to some problems. For example, system of linear

equations

Ax = b, A ∈ Rn×n, b ∈ Rn, (1)

we can efficiently obtain an approximate solution x̃ of (1) using some software pack-

ages1, even if n is 10000. Of course, I do not want to solve to this problem by hand

calculation!! However, when floating-point arithmetic is used for numerical compu-

tations, then the solution includes rounding errors. In general, rounding errors are

small. However, in some cases solutions are affected by rounding error. Let’s feel

rounding errors.

Exercise 2.1. Write the Algorithm 2 and run it.

Algorithm 2 sqrtpow.f90

program sqrtpow
integer :: i, n
real(8) :: x
write(*,*) ’Please input a number n=’
read(*,*) n
x = 2d0 ! Substitute 2× 100 for x, and ! sign means comment out in fortran.
write(*,*) ’Exact : ’, x
do i=1,n
x = sqrt(x) ! sqrt(x) means the square root of x.
end do
do i=1,n
x = x**2d0 ! x**2d0 means the square of x.
end do
write(*,*) ’Approximate : ’, x
end program sqrtpow

1In this lecture, we will use the Lapack(Linear Algebra PACKage) with the BLAS(Basic Linear
Algebra Subprogram). See Section 5.1.
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Example of execution:

$ gfortran sqrtpow.f90

$ ./a.out

Please input a number n =

0

Exact : 2.0000000000000000

Approximate : 2.0000000000000000

$ ./a.out

Please input a number n =

25

Exact : 2.0000000000000000

Approximate : 2.0000000066771721

$ ./a.out

Please input a number n =

50

Exact : 2.0000000000000000

Approximate : 1.6487212645509468

$ ./a.out

Please input a number n =

55

Exact : 2.0000000000000000

Approximate : 1.0000000000000000
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Algorithm 2 first repeatedly run the square root of x by Do statement. Next, the

program repeatedly run the square of x by Do statement. If real numbers, exactly

the same as before. However, because we use floating-point numbers, results include

rounding errors.

2.2. Verified Computations and Interval Arithmetic on Real

Numbers

Numerical solutions include rounding errors. Therefore, we do not know how

accurate computed solutions are. Verified computations solve this problem. The

essence of verified computation is interval. For example, floating-point numbers can’t

describe 1/3 = 0.3333 · · · . In verified computation, we describe interval [0.33, 0.34]

which enclose 1/3. Since intervals contain the exact solutions, we can understand

how the accuracy of approximate solutions.

How do you calculate four arithmetic operators in intervals?

Definition 2.2 (Interval Arithmetic on real numbers). Let IR be set of real

intervals. For x = [x, x̄] ∈ IR and y = [y, ȳ] ∈ IR, we define the following interval

arithmetic:

x+ y = [x+ y, x̄+ ȳ]

x− y = [x− ȳ, x̄− y]

x · y = [min(x̄ · ȳ, x̄ · y, x · ȳ, x · y), max(x̄ · ȳ, x̄ · y, x · ȳ, x · y)]

x/y = [min(x̄/ȳ, x̄/y, x/ȳ, x/y), max(x̄/ȳ, x̄/y, x/ȳ, x/y)] for 0 ̸∈ y

For ◦ = {+,−, ·, /}, Definition 2.2 satisfy

x̃ ◦ ỹ ∈ x ◦ y, ∀x̃ ∈ x, ∀ỹ ∈ y.
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Example 2.3. Let x = [−2, 4] and y = [1, 2]. Calculate four arithmetic operators

using the interval arithmetic.

x+ y = [−2, 4] + [1, 2] = [−2 + 1, 4 + 2] = [−1, 6]

x− y = [−2, 4]− [1, 2] = [−2− 2, 4− 1] = [−4,−3]

x · y = [−2, 4] · [1, 2] = [min(−2,−4, 4, 8),max(−2,−4, 4, 8)] = [−4, 8]

x/y = [−2, 4]/[1, 2] = [min(−2,−1, 4, 2),max(−2,−1, 4, 2)] = [−2, 4]

Exercise 2.4. Let x = [2, 4] and y = [−2,−1]. Calculate four arithmetic opera-

tors using the interval arithmetic.
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Chapter 3

Floating-Point Number and Its

Interval Arithmetic

11



3.1. IEEE 754 : Standard for Floating-Point Arithmetic

The IEEE 754 : Standard for Floating-Point Arithmetic is a technical standard for

floating-point number. Floating-point unit of many CPU use the IEEE 754 standard.

For more detail, see

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935

In this chapter, I will introduce to formats of floating-point number in IEEE 754.

Next, I will describe rounding rules.

IEEE 754 standard have single and double formats which are binary floating-point

basic formats. Representations of floating-point numbers in the binary formats are

(−1)s × 2e ×m, where

a) s is 1-bit sign (0 or 1)

b) e is any integer satisfying emin ≤ e ≤ emax.

c) m is a number represented by the form d0.d1d2 · · · dp−1 where di is 0 or 1.

The value of emax and p are given in Table 3.1 (emin shall be 1− emax).

Table 3.1. Verification results.

Parameter single double
p 24 53

emax 127 1023

In Figure 3.1, we displays the representation of Single format. We note that start

of the significand field is d1 because we can put d0 = 1 i.e. normalization.

Sign s Exponent e (8bit) Significand field p-1 (23bit)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10d11d12d13d14d15d16d17d18d19d20d21d22d23e0 e1 e2 e3 e4 e5 e6 e7s

Figure 3.1. Representation of Single format.
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Example 3.1. Convert from the following 10 decimal numbers to the floating

point number. Here, p = 4 and e have 3 bit.

7.25 = (111.01)2

= (−1)0 × 22 × (1.1101)2

where (·)2 means 2 decimal numbers. Answer is

0 010 1101

Let F be set of floating-point numbers defined by IEEE 754 standard. You can

notice that if p = 3 in Example 3.1 , then we can not represent the floating point

number. Here, we have F ⊂ R. IEEE 754 standard defines five rounding rules. In

this lecture, we introduce following three rounding rules:

a) Rounding to Nearest :

・Rounding to Nearest rounds to the nearest value.

・This operator is denoted by 2 : R → F

b) Rounding toward +∞ :

・Rounding toward +∞ directed rounding towards positive infinity.

・This operator is denoted by △ : R → F

c) Rounding toward −∞ :

・Rounding toward −∞ directed rounding towards negative infinity.

・This operator is denoted by ▽ : R → F

From Figure 3.2 , the real number r is enclosed by interval [▽r,△r].

0
Real number r

rr

0
Real number r

rr

Figure 3.2. Rounding (· is a floating-point number).
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3.2. Interval Arithmetic on Floating-Point Numbers

In Section 2.2, we define the interval arithmetic on real numbers. However, in

some cases, real numbers are not represented floating-point numbers. We now extend

Definition 2.2 to use a computer.

Definition 3.2 (Interval Arithmetic on floating-point numbers). Let IF be set

of intervals for floating-point numbers. For x = [x, x̄] ∈ IF and y = [y, ȳ] ∈ IF, we

define the following interval arithmetic:

x+ y = [▽(x+ y),△(x̄+ ȳ)]

x− y = [▽(x− ȳ),△(x̄− y)]

x · y

= [min(▽(x̄ · ȳ), ▽(x̄ · y), ▽(x · ȳ), ▽(x · y)), max(△(x̄ · ȳ), △(x̄ · y), △(x · ȳ), △(x · y))]

x/y

= [min(▽(x̄/ȳ), ▽(x̄/y), ▽(x/ȳ), ▽(x/y)), max(△(x̄/ȳ), △(x̄/y), △(x/ȳ), △(x/y))] for 0 ̸∈ y

3.3. How to Change Rounding Rules

If your fortran compiler support the official Fortran 2003 standard, then you can

change rounding rules using fortran. For example, after Intel Fortran Compiler version

13 and gfortran version 5.1 are. If not support Fortran 2003 standard, then we change

rounding rules using the C language. In this lecture, we will change rounding rules

using the C language.

We now show Algorithm 3 which include setround function and getround function.

The setround function is setting rounding rules and this argument is −1, 0 and 1.

setround(0) : Rounding to Nearest

setround(1) : Rounding toward +∞

setround(−1) : Rounding toward −∞
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The getround function returns current rounding rules (but not setting). Return value

is:

0 : Rounding to Nearest

1 : Rounding toward +∞

−1 : Rounding toward −∞

There functions can use the fortran language.

Algorithm 3 cround.c

#include<stdio.h>
#include<fenv.h>

void setround(int a){
if (a == -1) fesetround(FE DOWNWARD);
else if (a == 0) fesetround(FE TONEAREST);
else if (a == 1) fesetround(FE UPWARD);
else printf(”ERROR : setround : Please input -1, 0, 1¥n”);
}

void getround(int *a){
volatile double e, x, y, z;
e = 10e-30;
x = 1.0 + e;
y = 1.0 - e;
if (x == y) *a = 0;
else {
z = (-1.0) + e;
if (x == 1 ||z == -1) *a = -1;
else if (y == 1) *a = 1;
else *a = 2;
}
}

void setround (int *a){
setround(*a);
}

void getround (int *a){
getround(a);
}
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We next make static library which is cround.a file using following commands:

$ gcc − c cround.c

$ ar cr cround.a cround.o

Exercise 3.3. Write the Algorithm 4 and run it. Here, you need to use the

following command:

$ gfortran roundtest.f90 cround.a

Algorithm 4 roundtest.f90

program roundtest
real(8) :: a, b, c
integer :: rnd
call setround(0)
a = -1d0
b = 3d0

call getround(rnd)
write(*,*) ’Rounding rule is ’, rnd

call setround(1)
c = a/b
write(*,*) ’Rounding to +infinity’
write(*,’(b64)’) c

call setround(-1)
c = a/b
write(*,*) ’Rounding to -infinity’
write(*,’(b64)’) c

call setround(0)
stop
end program roundtest
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Example of execution:

$ gfortran roundtest.f90 cround.a

$ ./a.out

Rounding rule is 0

Rounding to + infinity

1011111111010101010101010101010101010101010101010101010101010101

Rounding to − infinity

1011111111010101010101010101010101010101010101010101010101010110
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In this chapter, we will introduce verification theories for system of linear equations

Ax = b, A ∈ Rn×n, b ∈ Rn. (2)

We first present the Banach perturbation lemma.

Lemma 4.1 (Banach’s perturbation lemma). Let X and Y be Banach spaces. A

bounded linear operator D : X → Y has the bounded inverse operator D−1 : Y → X.

If a bounded linear operator B : X → Y holds

∥D−1B∥ < 1, (3)

then the bounded linear operator D + B : X → Y has the bounded inverse operator

(D +B)−1 : Y → X and we have

∥(D +B)−1∥ ≤ ∥D−1∥
1− ∥D−1B∥

(4)

We next present the following theorem for regularity of a matrix A ∈ Rn×n.

Lemma 4.2. Let I denote the n×n identity matrix. Let A be an n×n real matrix

and R be some approximate inverse of A. If

∥RA− I∥ < 1 (5)

is satisfied, then (RA)−1 exists and we have

∥(RA)−1∥ ≤ 1

1− ∥RA− I∥
(6)

Proof

We use Lemma 4.1 as D = I and B = RA − I. Since D−1B = I(RA − I), the

condition (3) in Lemma 4.1 is the same as the condition (5). Therefore, the matrix

RA(= D +B) has the inverse matrix (RA)−1 and we have (6).

2
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We next present the verification theorem for system of linear equations.

Theorem 4.3. Let I denote the n × n identity matrix. Let A be an n × n real

matrix and b an n real vector. Let x∗ be a exact solution of Ax = b and x̃ an its

approximate solution. Let R be some approximate inverse of A. If

∥RA− I∥ < 1

is satisfied, then the exact solution of Ax = b exists and we have

∥x∗ − x̃∥ ≤ ∥R(b− Ax̃)∥
1− ∥RA− I∥

. (7)

Proof

We rewrite (2) as

RAx = Rb. (8)

Since RA is nonsingular from Lemma 4.2, (8) has an exact solution

x∗ = (RA)−1Rb.

We have

x∗ − x̃ = (RA)−1Rb− x̃ = (RA)−1(Rb−RAx̃)

= (RA)−1R(b− Ax̃).

Finally, from (6), we have

∥x∗ − x̃∥ = ∥(RA)−1R(b− Ax̃)∥

≤ ∥(RA)−1∥∥R(b− Ax̃)∥

≤ ∥R(b− Ax̃)∥
1− ∥RA− I∥

.

2
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Remark 4.4. From Theorem 4.6,

∥x∗ − x̃∥ ≤ ∥R(b− Ax̃)∥
1− ∥RA− I∥

≤ ∥R∥∥b− Ax̃∥
1− ∥RA− I∥

. (9)

The notation |A| means |A| = (|aij|) ∈ Rn×n, the nonnegative matrix consisting

of componentwise absolute values of A. Similar notation is applied to real vectors.

Finally, we present an componentwise error bounds |x∗ − x̃| for Ax = b. Before that

we show the following lemma.

Lemma 4.5. Let e the n-vector of all ones i.e. e := (1, . . . , 1)T ∈ Rn. For any

x ∈ Rn,

|x| ≤ ∥x∥∞e (10)

Proof

Form the definition of infinity norm, we have

|xj| ≤ ∥x∥∞, 1 ≤ j ≤ n.

Therefore,

|x| ≤ ∥x∥∞e.

2

Theorem 4.6. Let I denote the n × n identity matrix. Let A be an n × n real

matrix and b an n real vector. Let x∗ be a exact solution of Ax = b and x̃ an its

approximate solution. Let R be some approximate inverse of A. If

∥RA− I∥ < 1

is satisfied, then the exact solution of Ax = b exists and we have

|x∗ − x̃| ≤ |R(b− Ax̃)|+ ∥R(b− Ax̃)∥∞
1− ∥RA− I∥∞

|RA− I|e. (11)
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Proof

We have

x∗ − x̃ = RAx̃−RAx̃+Rb−Rb+ x∗ − x̃

= R(b− Ax̃) +RAx̃−Rb+ x∗ − x̃

= R(b− Ax̃) +RAx̃−RAx∗ + x∗ − x̃

= R(b− Ax̃)−RA(x∗ − x̃) + x∗ − x̃

= R(b− Ax̃) + (I −RA)(x∗ − x̃)

From (10) and (11),

|x∗ − x̃| = |R(b− Ax̃) + (I −RA)(x∗ − x̃)|

≤ |R(b− Ax̃)|+ |(I −RA)(x∗ − x̃)|

≤ |R(b− Ax̃)|+ |I −RA||x∗ − x̃|

≤ |R(b− Ax̃)|+ |RA− I|∥x∗ − x̃∥∞e

≤ |R(b− Ax̃)|+ ∥R(b− Ax̃)∥∞
1− ∥RA− I∥∞

|RA− I|e

2
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5.1. Install BLAS and Lapack

BLAS (Basic Linear Algebra Subprograms) are routines that provide basic vector

and matrix operations (e.g. dot product and matrix multiplication). Because BLAS

are efficient and portable, linear algebra software use this (e.g. Lapack). Now, we

can choose some BLAS:

a) Reference BLAS :

・It is a freely-available software package but slow.

b) Intel MKL :

・It is very fast.

・You need to charge.

・MATLAB use this.

c) ATLAS :

・It is free.

・ATLAS is faster than Reference BLAS.

・However, I feel slow.

d) Open BLAS :

・It is free.

・Open BLAS is as fast as Intel MKL.

In this lecture, we install the Open BLAS.

1) Download :

・You can download zip file or ter.gz file from the following URL.

http://www.openblas.net/

2) Unzip :

・You need to unzip to Home directory.

3) Edit Make.rule file :

・You need to edit the Make.rule file.
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(Before)

# Fortran compiler. Default is g77

# FC = gfortran

⇓

(After)

# Fortran compiler. Default is g77

FC = gfortran

(Before)

# If you don’t need CBLAS interface, please comment it in.

# NO CBLAS = 1

⇓

(After)

# If you don’t need CBLAS interface, please comment it in.

NO CBLAS = 1

(Before)

# If you don’t need LAPACK, please comment it in.

# If you set NO LAPACK=1, the library automatically sets NO LAPACKE=1.

# NO LAPACK = 1

⇓

(After)

# If you don’t need LAPACK, please comment it in.

# If you set NO LAPACK=1, the library automatically sets NO LAPACKE=1.

NO LAPACK = 1
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(Before)

# If you need to synchronize FP CSR between threads (for x86/x86 64 only).

# CONSISTENT FPCSR = 1

⇓

(After)

# If you need to synchronize FP CSR between threads (for x86/x86 64 only).

CONSISTENT FPCSR = 1

(Before)

# gfortran option for LAPACK

# enable this flag only on 64bit Linux and if you need a thread safe lapack library

# FCOMMON OPT = -frecursive

⇓

(After)

# gfortran option for LAPACK

# enable this flag only on 64bit Linux and if you need a thread safe lapack library

FCOMMON OPT = -frecursive

4) make command :

・You type “make” in Gnome terminal.

5) Move the libopenblas ???.so file:

・In home directory, you make a directory that name “lib”.

・libopenblas ???.so file in OpenBLAS directory is. moved to lib directory.

・libopenblas ???.so file change to name “oblas.so”.
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Next, we install Lapack. Lapack provides rotines for solving system of linear

equations, eigenvalue problems, and singular value problems.

1) Download :

・You can download tgz file from the following URL.

http://www.netlib.org/lapack/

2) Unzip :

・You need to unzip to Home directory.

3) Edit make.inc.example file :

・You may edit the make.inc.example file.

(Before)

BLASLIB = ../../librefblas.a

⇓

(After)

BLASLIB = /̃lib/oblas.so

4) Change the filename of make.inc.example:

・make.inc.example file change to name “make.inc”.

5) make command :

・You type “make” in Gnome terminal.

6) Move the liblapack.a file:

・liblapack.a file in Lapack directory is. moved to lib directory.

・liblapack.a file change to name “lapack.a”.
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5.2. Install Slib

Slib is not yet open my interval arithmetic library.

1) Download :

・You can download zip file from the following URL (Japanese site...).

http://271.jp/slib/index.php

・Here, you need the following account and password.

Account:guest

Password:niigata

2) Unzip :

・You need to unzip to Home directory.

3) make command :

・You type “make” in Gnome terminal.

4) Move the libslib.a file:

・libslib.a file in Slib directory is. moved to lib directory.

・libslib.a file change to name “slib.a”.
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6.1. Interval Arithmetic for Matrix on floating-point num-

ber

In Section 3.2, we define the interval arithmetic on floating-point number. We

extend Definition 3.2 to use a matrix.

Definition 6.1 (Add and Subtract : Interval Arithmetic for matrix). Let IF be

set of intervals for floating-point numbers. For X = [X, X̄] ∈ IFn×m and Y = [Y, Ȳ ] ∈

IFn×m, we define the following interval arithmetic:

X + Y = [▽(X+Y),△(X̄ + Ȳ )]

X − Y = [▽(X− Ȳ ),△(X̄ −Y)]

Next, we want to show the matrix multiplication. However, matrix multiplication

is calculated by many add and multiply. Therefor, we define midrad form of intervals.

Let x be an interval of real number. Real numbers xm and xr are defined by

xm =
x̄− x

2
+ x,

xr = xm − x.

Then, we rewrite the interval x as

⟨xm, xr⟩ = [x, x̄].

Here, xm and xr means midpoint and radius of interval x, respectively.

Next, let x be an interval of floating-point number. floating-point numbers xm and

xr are defined by

xm = △
(
x̄− x

2
+ x

)
,

xr = △ (xm − x) ,
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where △(·) means that all calculation in curly bracket is upward. Here, we have

[x, x̄] ⊂ ⟨xm, xr⟩ ⊂ [▽(xm − xr),△(xm + xr)].

The midrad form is applied to matrix multiplication for interval.

Definition 6.2 (Add and Subtract : Interval Arithmetic for matrix). Let IF

be set of intervals for floating-point numbers. For X = ⟨Xm, Xr⟩ ∈ IFn×m and

Y = ⟨Ym, Yr⟩ ∈ IFm×n, we define the following interval arithmetic:

X · Y = [▽(Xm · Ym − C),△(Xm · Ym + C)]

where

C = △((|Xm|+Xr) · Yr +Xr · |Ym|).

Exercise 6.3. Write the Algorithm 5 and run it. Here, you need to use the

following command:

$ gfortran matint.f90 ∼ /lib/slib.a ∼ /lib/lapack.a ∼ /lib/oblas.a

You need to make the matint.f90 in slib directory.
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Algorithm 5 matint.f90

program matint
use slib
real(8), dimension(:,:), allocatable :: Aup, Adown, Bup, Bdown, Cup, Cdown
real(8), dimension(:,:), allocatable :: Amid, Arad, Bmid, Brad, C
integer :: n=5
call setround(0)
call rand(Aup,n)
call rand(Bup,n)
Adown = Aup
Bdown = Bup

!Add
call setround(1)
Cup = Aup + Bup
call setround(-1)
Cdown = Adown + Bdown
call setround(0)

!Multiplication
call setround(1)
Amid = (Aup - Adown)/2d0 + Adown
Arad = Amid - Adowm
Bmid = (Bup - Bdown)/2d0 + Bdown
Brad = Bmid - Bdowm
C = ((abs(Amid) + Arad) .gemm. Brad) + (Arad .gemm. abs(Bmid))
Cup = (Amid .gemm . Bmid) + C
call setround(-1)
Cdown = (Amid .gemm . Bmid) - C
call setround(0)
end program matint

6.2. Programming of Verified Theory for System of Linear

Equations
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Algorithm 6 Vlinear1.f90

program vlinear1
use slib
implicit none
real(8), allocatable, dimension(:,:) :: A, b, x, R, I, Gd, Gu
real(8), allocatable, dimension(:,:) :: rd, ru, Gnorm, Rnorm, resnorm, D, Ainv, error
integer :: n
call setround(0)
n = 1000
call rand(A,n)
call rand(b,n,1)

call inv(A,R)
x = R .gemm. b
call eye(I,n)

call setround(-1)
Gd = abs((R.gemm.A) - I)
rd = abs((A .gemm. x) - b)

call setround(1)
Gu = abs((R.gemm.A) - I)
ru = abs((A .gemm. x) - b)
call output(ru)
Gu = max(Gu,Gd)
ru = max(ru,rd)
call norm(Gu,0,Gnorm)
call norm(R,0,Rnorm)
call norm(ru,0,resnorm)

call setround(-1)
D = 1d0 - Gnorm

if (D(1,1) > 0d0) then
call setround(1)
Ainv = Rnorm/D
error = Ainv*resnorm
write(*,*) error
else
write(*,*) ’Verification is failed...’
end if
call setround(0)
end program vlinear1
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